approximately n-order linear differential equations

نویسندگان

abbas javadian

چکیده

we prove the generalized hyers--ulam stability  of n--th order linear differential equation of the form $y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x)$, with condition that there exists a non--zero solution of corresponding homogeneous equation. our main results extend and improve the corresponding results obtained by many authors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Irreducible Linear Differential Equations of Prime Order

With the exception of a nite set of nite diierential Galois groups, if an irreducible linear diierential equation L(y) = 0 of prime order with unimodular diierential Galois group has a Liouvillian solution, then all algebraic solutions of smallest degree of the associated Riccati equation are solutions of a unique minimal polynomial. If the coeecients of L(y) = 0 are in Q()(x) Q(x) this unique ...

متن کامل

HIGHER-ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS II: Nonhomogeneous Equations

Because the presentation of this material in class will differ from that in the book, I felt that notes that closely follow the class presentation might be appreciated.

متن کامل

A new approach for solving the first-order linear matrix differential equations

Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of nonlinear analysis and applications

ناشر: semnan university

ISSN

دوره 6

شماره 1 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023